Kondensator

Wszystkie sprawy związane z lutowaniem, projektowaniem i programowaniem urządzeń elektronicznych.

Kondensator

Postprzez Zilog » 2010-07-20, 21:42:41

Kondensator

Kondensator to element elektryczny (elektroniczny) zbudowany z dwóch przewodników (okładzin) rozdzielonych dielektrykiem. Doprowadzenie napięcia do okładzin kondesatora powoduje zgromadzenie się na nich ładunku elektrycznego.
Kondensator charakteryzuje pojemność wyrażona w faradach. Jeden farad to bardzo duża jednostka, dlatego w praktyce spotyka się kondensatory o pojemnościach piko-, nano- i mikrofaradów.Ogólnie, napięcie u_C i prąd i_C kondensatora w chwili t związane są zależnością:
u_C={1 over C} int_{-infty}^t i_C d tau
Energię W zgromadzoną na okładkach kondensatora można policzyć korzystając z:
dW={q over C} dq
Wzór ten podaje pracę dW, jaka jest potrzebna na przesunięcie ładunku dq z jednej okładki kondensatora o pojemności C na drugą, przy założeniu, że jedna z okładek jest naładowana ładunkiem q, a druga - ładunkiem -q.
Całą energię zmagazynowaną w kondensatorze oblicza się przez scałkowanie powyższego wzoru, uzyskując:
W=int_0^Q {q over C} dq={1 over 2} {Q^2 over C}={1 over 2} CU_C^2
przy czym Q jest ładunkiem, do którego naładowano kondensator, związanym z napięciem na okładkach za pomocą zależności:
C={Q over {U_C}}
Wiedząc o tym, że prąd elektryczny to zmiana ładunku w czasie, można również zapisać:
i_C== C
Dla prądu stałego (=0) kondensator jest równoważny przerwie w obwodzie (i_C=0), ale dopiero od chwili zakończenia się jego ładowania. Dla prądu przemiennego prąd płynący przez kondensator powoduje pewien spadek napięcia. Wielkość, wiążąca prąd i napięcie na kondensatorze nazywa się reaktancją, która jest tym mniejsza, im większa jest pojemność kondensatora i częstotliwość prądu. Kondensator charakteryzuje się tym, że (dla sygnałów sinusoidalnych) prąd jest opóźniony w fazie względem napięcia o 90 stopni. Z tego względu impedancja kondensatora jest wartością urojoną i opisana jest wzorem:
Z= -j frac {1} {2 pi f C},
gdzie C to pojemność kondensatora w faradach, f to częstotliwość w hercach.
Kondensator jest jednym z podstawowych elementów elektronicznych, szeroko wykorzystywany we wszystkich typach układów, w szczególności razem z cewką tworzy obwód rezonansowy.

Rodzaje konstrukcji kondensatorów

Kondensatory elektrolityczne

Dielektrykiem jest cienka warstwa tlenku metalu, osadzona elektrochemicznie na okładzinie dodatniej z tego samego metalu. Drugą okładzinę stanowi ciekły lub suchy elektrolit. Materiałem tworzącym metaliczną elektrodę kondensatora elektrolitycznego może być m.in. aluminium oraz tantal. Tradycyjnie, w żargonie technicznym, kondensatorami elektrolitycznymi nazywa się kondensatory aluminiowe z ciekłym elektrolitem; w rzeczywistości, kondensatorami elektrolitycznymi są również kondensatory tantalowe z elektrolitem stałym (a także, rzadziej spotykane, z elektrolitem ciekłym). Prawie wszystkie kondensatory elektrolityczne mają ustaloną polaryzację, zatem mogą pracować tylko przy określonym znaku napięcia. W przypadku odwrócenia polaryzacji może nastąpić reakcja elektrochemiczna prowadząca do zniszczenia kondensatora; wydzielający się w jej wyniku gaz może doprowadzić do eksplozji jego obudowy.

Do kondensatorów elektrolitycznych zalicza się również tzw. superkondensatory o pojemnościach rzędu wielu tysięcy faradów.

Kondensatory elektrolityczne aluminiowe

Jako elektrody dodatniej używa się aluminium. Dielektryk stanowi cienka warstwa trójtlenku glinu (Al2O3) Właściwości:
pracują poprawnie tylko dla małych częstotliwości,
buduje się je tylko dla dużych pojemności,
charakteryzują się wysokim stosunkiem pojemności do rozmiaru: kondensatory elektrolityczne mają na ogół duże rozmiary, lecz kondensatory innego typu o tej samej pojemności i napięciu przebicia byłyby znacznie większe
charakteryzują się wysokimi prądami upływu
mają umiarkowanie niską rezystancję szeregową i małą indukcyjność szeregową.

Kondensatory tantalowe

Są to kondensatory elektrolityczne w których elektroda metaliczna wykonana jest z tantalu, zaś warstwę dielektryczną tworzy pięciotlenek tantalu (Ta2O5). Właściwości:
wysoka odporność na warunki zewnętrzne,
niewielkie rozmiary: dla pojemności mniejszych od kilkuset μF porównywalne lub mniejsze od kondensatorów aluminiowych o tym samym maksymalnym napięciu przebicia,
mniejszy niż w przypadku mokrych kondensatorów aluminiowych prąd upływu.

Kondensatory foliowe

Dielektrykiem jest folia z tworzywa sztucznego np. poliestrowa (kondensatory oznaczane jako KT i MKT), polipropylenowa (KP, MKP) lub poliwęglanowa (KC, MKC). Elektrody mogą być napylone na tę folię (MKT, MKP, MKC) lub wykonane w postaci osobnej folii metalowej, zwijanej lub prasowanej wspólnie z folią dielektryka (KT, KP, KC). Dawniej wykonywano również kondensatory z polistyrenu, nazywanego również styrofleksem (obecnie używa się ich tylko w specjalistycznych zastosowaniach). Nowoczesnym materiałem na folie kondensatorów jest siarczek polifenylu (PPS). Właściwości ogólne kondesatorów foliowych (wspólne dla wszystkich rodzajów izolatora):
pracują poprawnie przy dużym prądzie,
mają dużą wytrzymałość napięciową,
mają relatywnie małą pojemność,
znikomy prąd upływu,
używane w obwodach rezonansowych i układach typu snubber[2].

Poszczególne rodzaje folii różnią się właściwościami temperaturowymi (łącznie ze znakiem współczynnika temperaturowego pojemności, który jest ujemny dla polipropylenu i polistyrenu oraz dodatni dla poliestru i poliwęglanu), maksymalną temperaturą pracy (od 125 °C dla poliestru i poliwęglanu do 100 °C dla polipropylenu i 70 °C dla polistyrenu), odpornością na przebicie elektryczne (a zatem maksymalnym napięciem, jakie można przyłożyć do określonej grubości folii bez jej przebicia).

Kondensatory ceramiczne

Kondensatory te są wykonywane w postaci pojedynczej płytki lub stosu płytek ze specjalnych materiałów ceramicznych. Metaliczne elektrody są napylone na płytki i połączone z doprowadzeniami kondensatora. Stosowane materiały ceramiczne mogą mieć bardzo różne własności. Różnorodność ta obejmuje przede wszystkim szeroki zakres wartości względnych przenikalności elektrycznych, od kilku (podobnie jak we wszystkich pozostałych materiałach używanych do produkcji kondensatorów) do kilkudziesięciu tysięcy (wartości osiągalne tylko w materiałach ceramicznych). Tak wysokie wartości pozwalają na zbudowanie niewielkich rozmiarów kondensatorów, których pojemności mogą konkurować z kondensatorami elektrolitycznymi, a przy tym pracujących z dowolną polaryzacją i charakteryzujących się mniejszymi upływnościami. Materiały ceramiczne charekteryzują się skomplikowanymi i nieliniowymi zależnościami parametrów od temperatury, częstotliwości zmian i napięcia. Te o najniższych wartościach stałej dielektrycznej znakomicie pracują przy wielkich częstotliwościach, bywają również wykonywane jako kondensatory o zmiennej pojemności (tzw. trymery).

Kondensatory powietrzne

Dielektrykiem jest powietrze – znakomicie pracują przy wysokich częstotliwościach, często wykonywane są jako kondensatory zmienne (strojeniowe).

Kondensatory strojeniowe-zmienny

Kondensator zmienny nazywany również nastawnym lub strojeniowym – kondensator, którego pojemność można płynnie zmieniać. W większości przypadków stosowany jest w obwodach strojeniowych odbiorników radiowych i telewizyjnych razem z kondensatorami stałymi. Często do dokładnego zestrojenia wstępnego obwodu stosuje się włączone równolegle z nim małe kondensatory zmienne, zwane trymerami.

Budowa kondensatora zmiennego
-stator – elektroda lub zespół elektrod (płytek) stałych,
-rotor – elektroda lub zespół elektrod (płytek) ruchomych, najczęściej elektrycznie połączonych z obudową (masą) kondensatora.

Płytki statora i rotora mogą być wykonane z aluminium lub miedzi i jej stopów. Płytki obu podzespołów wchodzą między siebie, nie mogą się jednak dotykać (zwierać), dlatego rozdzielone są warstwą dielektryka, którym mogą być: próżnia, powietrze, ceramika, mika lub teflon.

Kondensator strojeniowy- agregat

W najprostszym wykonaniu kondensator strojeniowy tworzą dwie płytki, odizolowane od siebie warstwą dielektryka i ruchome względem siebie. Jednak w takim wykonaniu kondensator ma bardzo małą pojemność i stosowany jest tylko dla dużych częstotliwości. W celu zwiększenia pojemności buduje się kondensatory strojeniowe w postaci zespołów (sekcji) składających się z wielu płytek statora i rotora. W odbiornikach będących superheterodynami muszą istnieć dwa lub trzy kondensatory o jednocześnie zmieniającej się pojemności – takie sekcje montuje się na wspólnej osi, tworząc agregaty. Najczęściej produkowane są agregaty złożone z jednej, dwóch lub trzech sekcji. Ponieważ kondensatory tego typu wykonywane są specjalnie dla danego typu urządzenia, w tym celu, by zapewnić odpowiednie charakterystyki zmian pojemności wszystkich kondensatorów, montuje się w nich dodatkowe kondensatory zmienne o małej pojemności, zwane trymerami, stosuje się też odginanie pociętych na sekcje zewnętrznych płytek sekcji.Obecnie kondensatory strojeniowe zastępowane są przez diody pojemnościowe – warikapy.


Zastosowania

Kondensatory, wraz z rezystorami, należą do podstawowych elektronicznych elementów pasywnych. Poniższy podział kondensatorów ze względu na podstawowe obszary zastosowań nie jest ścisły. Te same lub podobne typy kondensatorów mogą być wykorzystywane w różnych dziedzinach, zaś o ich przydatności w określonej grupie zastosowań decydują - oprócz pojemności, również parametry dodatkowe, takie jak napięcie przebicia, polaryzacja, opór szeregowy (doprowadzeń) i równoległy (upływność), pasożytnicza indukcyjność doprowadzeń i okładek, szczytowy prąd impulsu, długoczasowa stałość parametrów (odporność na starzenie się), stabilność temperaturowa (stałość pojemności w szerokim przedziale temperatur), zakres temperatur pracy, czy wreszcie parametry takie jak kształt i rozmiar (stopień miniaturyzacji).

Kondensatory w układach zasilających

W zasilaczach i stabilizatorach napięcia kondensatory pozwalają na podtrzymanie wartości chwilowej napięcia w przerwach pomiędzy kolejnymi impulsami prądu dopływającego z prostownika, ograniczają wahania napięcia i pozwalają na chwilowy pobór prądu o natężeniu znacznie przewyższającym wartość skuteczną lub średnią. W klasycznych zasilaczach transformatorowych stosuje się najczęściej kondensatory elektrolityczne o dużej pojemności. Od kondensatorów przeznaczonych do użycia w obwodach zasilających oczekuje się najczęściej wysokiej pojemności, możliwości pracy w dużym przedziale temperatur, wysokiej wartości napięcia przebicia (ściślej: bezwzględnego utrzymania wartości znamionowej tego napięcia określonej przez producenta) oraz odporności na krótkotrwały pobór prądu o dużym natężeniu. Nie jest istotna stałość pojemności w czasie ani liniowość charakterystyki: kondensatory te mogą pracować tylko przy określonej polaryzacji, zaś ich izolatory mogą być wykonane z materiałów ferroelektrycznych.

Kondensatory przeciwzakłóceniowe

W układach wytwarzających zakłócenia związane z szybkimi skokami pobieranego prądu (takich, jak silniki elektryczne, iskrowniki, tyrystorowe układy sterujące) kondensatory są elementami filtrów ograniczających przedostawanie się zakłóceń do sieci energetycznej (zob. jakość energii elektrycznej) oraz powstawanie zakłóceń radiowych. Kondensatory przeciwzakłóceniowe mają najczęściej niską rezystancję i indukcyjność doprowadzeń oraz wysokie napięcie przebicia, powinny umożliwiać przepływ prądu o dużej wartości chwilowej.

Kondensatory blokujące

W elektronicznych układach cyfrowych (m.in. podzespołach komputerowych) pobór prądu z szyn zasilających może się zmieniać w czasie o kilka rzędów wielkości. Układy te (zwłaszcza wykonane w nowoczesnych technologiach CMOS) pobierają bowiem prąd praktycznie tylko podczas przełączania poziomów napięć, a przy tym jego chwilowa wartość może przy tym rosnąć od pikoamperów do kilku amperów. Ponadto, w układach synchronicznych (taktowanych wspólnym zegarem) wszystkie współpracujące ze sobą układy jednocześnie zwiększają zapotrzebowanie na prąd. Ze względu na oporność, a przede wszystkim - indukcyjność szyny zasilającej, taki impulsowy pobór prądu może prowadzić do bardzo dużych wahań napięcia zasilającego i w konsekwencji nieprawidłowej pracy układów. Aby zapobiec tym negatywnym zjawiskom, stosuje się kondensatory blokujące, podłączane równolegle z doprowadzeniami zasilania poszczególnych układów i umieszczane jak najbliżej nich. Kondensatory te powinny mieć jak najniższą indukcyjność pasożytniczą. W przypadku kondensatorów blokujących nie ma znaczenia napięcie przebicia ani stałość pojemności w czasie, w związku z czym typowe monolityczne i ceramiczne kondensatory blokujące mogą nie nadawać się do zastosowań innych, niż dedykowane.

Kondensatory sprzęgające

Idealny kondensator o bardzo dużej pojemności może zostać włączony w dowolne miejsce obwodu prądu stałego nie powodując w nim jakichkolwiek zmian punktu pracy (po okresie przejściowym, związanym z ładowaniem się lub rozładowywaniem kondensatora, wszystkie napięcia i prądy osiągną wartości takie, jak bez kondensatora). Z kolei w obwodzie prądu zmiennego kondensator taki (przy pojemności dążącej do nieskończoności) zachowuje się jak źródło napięcia: nie zmienia składowej stałej napięcia w miejscu, do którego zostanie podłączony, i jednocześnie stanowi zwarcie dla składowej zmiennej. Dzięki temu kondensator można wykorzystać do przenoszenia sygnału (rozumianego jako zmiany prądu lub napięcia) pomiędzy różnymi fragmentami układu w taki sposób, że transmitowana jest tylko składowa zmienna (sygnał), a przy tym nie ulegają zmianie stałoprądowe warunki pracy połączonych kondensatorem podukładów. Kondensator pełniący taką rolę określany jest mianem kondensatora sprzęgającego.

Kondensatory sprzęgające ułatwiają projektowanie analogowych układów elektronicznych, pozwalając na podzielenie ich na podukłady, z których każdy charakteryzuje się własnym punktem pracy i odpowiednim poziomem napięcia stałego. W szczególności, kondensatory sprzęgające są stosowane na wejściach i wyjściach wzmacniaczy i ich poszczególnych stopni. Kondensator sprzęgający powinien mieć jak najmniejszą upływność i jak największą (w praktyce: odpowiednią do dolnej granicy przenoszonego pasma częstotliwości sygnału) pojemność.

Kondensatory do filtrów i układów czasowych

Kondensatory są podstawowymi elementami analogowych filtrów pasywnych i aktywnych, służących do kształtowania charakterystyki częstotliwościowej określonych części układów (np. wzmacniaczy). Filtry i układy czasowe zbudowane w oparciu o kondensatory i rezystory noszą nazwę układów RC zaś filtry zawierające również cewki (w szczególności, układy rezonansowe) to elementy RLC.

Od kondensatorów wchodzących w skład takich układów oczekuje się najczęściej wysokiej stabilności temperaturowej i długoczasowej, niskich strat w obszarze przenoszonych częstotliwości, a także doskonałej liniowości charakterystyki (izolatory używane do budowy takich kondensatorów nie mogą być ferroelektrykami). W przypadku kondensatorów używanych w obwodach wysokiej częstotliwości istotne są również detale związane z kształtem kondensatora i stratami energii elektryczne na promieniowanie.

Kondensatory do lamp i innych układów wyładowczych

W niektórych lampach wyładowczych (np lampach błyskowych i stroboskopach) oraz iskrownikach kondensator jest połączony równolegle z układem, w który pobór prądu narasta w bardzo krótkim czasie od zera do dużej wartości związanej z odbywającym się wyładowaniem. Do inicjacji wyładowania potrzebne jest na ogół wysokie napięcie, osiągane stopniowo w cyklu ładowania kondensatora. Iloczyn napięcia wyładowania i maksymalnego pobieranego prądu określa moc szczytową wyładowania, natomiast wycałkowana po czasie wartość iloczynu I U jest całkowitą energią impulsu. Kondensatory do takich zastosowań powinny mieć możliwie wysokie wartości obu tych parametrów, muszą mieć również niską rezystancję szeregową, wysokie napięcie przebicia, a w przypadku lamp pracujących cyklicznie - odporność na wysokie temperatury związane z wydzielaniem się ciepła na rezystancji szeregowej kondensatora.

Inne zastosowania

Kondensatory mają też zastosowanie w sieciach elektroenergetycznych do kompensacji mocy biernej (poprawy współczynnika mocy).
Avatar użytkownika
ZilogMale
Moderator
Moderator
 
Posty: 2797
Dołączył(a): 2007-06-01, 19:48:57
Podziękował : 2 razy
Otrzymał podziękowań: 1 razy
Imię: Tomasz

  • Inne

Powrót do Elektronika

Kto przegląda forum

Użytkownicy przeglądający ten dział: Brak zidentyfikowanych użytkowników i 149 gości

cron